

higher documentation

higher is a library providing support for higher-order optimization, e.g.
through unrolled first-order optimization loops, of “meta” aspects of these
loops. It provides tools for turning existing torch.nn.Module instances
“stateless”, meaning that changes to the parameters thereof can be tracked, and
gradient with regard to intermediate parameters can be taken. It also provides a
suite of differentiable optimizers, to facilitate the implementation of various
meta-learning approaches.

Library Reference:

	Top-Level Functions

	Monkey-Patching Functions

	Differentiable Optimizers

	Utility Functions

Indices and tables

	Index

	Module Index

	Search Page

Top-Level Functions

	
higher.innerloop_ctx(model, opt, device=None, copy_initial_weights=True, override=None, track_higher_grads=True)

	A context manager for writing differentiable inner loops.

	Parameters

	
	model – a torch.nn.Module subclass instance.

	opt – an existing optimizer, assumed to be an instance of
torch.optim.Optimizer, of a supported type which is either
defined in torch.optim, or a custom implemantation which has
been added to higher at runtime by using higher.register_optim.
We assume this optimizer tracks the parameters (or some subset
thereof) of a single torch.nn.Module instance, with support for
parameter groups.

	device (optional) – a device to cast the fast weights and state to. If
not specified, the device used for corresponding weights of
model will be used.

	copy_initial_weights – if true, the weights of the patched module are
copied to form the initial weights of the patched module, and thus
are not part of the gradient tape when unrolling the patched module.
If this is set to False, the actual module weights will be the
initial weights of the patched module. This is useful when doing
MAML, for example.

	override (optional) – a dictionary mapping optimizer settings (i.e. those
which would be passed to the optimizer constructor or provided
within parameter groups) to either singleton lists of override
values, or to a list of override values of length equal to the
number of parameter groups. If a single override is provided for a
keyword, it is used for all parameter groups. If a list is provided,
the ith element of the list overrides the corresponding
setting in the ith parameter group. This permits the passing
of tensors requiring gradient to differentiable optimizers for use
as optimizer settings.

	track_higher_grads – if True, during unrolled optimization the graph be
retained, and the fast weights will bear grad funcs, so as to permit
backpropagation through the optimization process. Setting this to
False allows innerloop_ctx to be used in “test mode”, without
potentially tracking higher order gradients. This can be useful when
running the training loop at test time, e.g. in k-shot learning
experiments, without incurring a significant memory overhead.

	Yields

	A (fmodule, diffopt) tuple. where fmodule is a “stateless”
version of the original module, for which calls to forward take the
additional kwarg-only parameter params, which should be a list of
torch tensors requiring gradients, ideally provided by this function
(see below) or by an update step from one of the optimizers in
higher.optim. And diffopt is an initialized
DifferentiableOptimizer instance of the right subtype.

Monkey-Patching Functions

Functions for making torch.nn.Module subclass instances stateless.

	
higher.patch.buffer_sync(module, fmodule, device=None)

	One off sync (copy) of buffers in fmodule with those from module.

	Return type

	None

	
higher.patch.make_functional(module, encapsulator=None)

	Returns a stateless version of an nn.Module instance.

	Return type

	_MonkeyPatchBase

	
higher.patch.monkeypatch(module, device=None, copy_initial_weights=True, track_higher_grads=True)

	Create a monkey-patched stateless version of a module.

This function produces a monkey-patched version of a module, and returns a
copy of its parameters for use as fast weights. Where the original module
or any of its submodules have state (e.g. batch norm), this will be copied
too, but further updates (e.g. during inner loop training) will cause these
to diverge without changing the state of the original module.

	Parameters

	
	module – a torch.nn.Module subclass instance.

	device (optional) – a device to cast the fast weights and state to.

	copy_initial_weights – if True, the weights of the patched module are
copied to form the initial weights of the patched module, and thus
are not part of the gradient tape when unrolling the patched module.
If this is set to False, the actual module weights will be the
initial weights of the patched module. This is useful when doing
MAML, for example.

	track_higher_grads – if True, during unrolled optimization the graph be
retained, and the fast weights will bear grad funcs, so as to permit
backpropagation through the optimization process. Setting this to
False allows monkeypatch to be used in “test mode”, without
potentially tracking higher order gradients. This can be useful when
running the training loop at test time, e.g. in k-shot learning
experiments, without incurring a significant memory overhead.

	Returns

	a “stateless” version of the original module, for which calls
to forward take the additional kwarg-only parameter params, which
should be a list of torch tensors requiring gradients, ideally
provided by this function (see below) or by an update step from one
of the optimizers in higher.optim.

	Return type

	fmodule

	Return type

	_MonkeyPatchBase

Differentiable Optimizers

Differentiable optimizer wrappers around torch.optim instances.

	
class higher.optim.DifferentiableASGD(other, reference_params, fmodel=None, device=None, override=None, grad_callback=None, track_higher_grads=True, **kwargs)

	A differentiable version of the ASGD optimizer.

This optimizer creates a gradient tape as it updates parameters.

Initialize the optimizer with the state of an existing optimizer.

	Parameters

	
	other – an existing optimizer instance.

	reference_params – an iterable over the parameters of the original
model.

	fmodel (optional) – a patched stateless module with a view on
weights.

	device (optional) – the device to cast state tensors to.

	override (optional) – a dictionary mapping optimizer settings (i.e.
those which would be passed to the optimizer constructor or
provided within parameter groups) to either singleton lists of
override values, or to a list of override values of length equal
to the number of parameter groups. If a single override is
provided for a keyword, it is used for all parameter groups. If
a list is provided, the ith element of the list overrides the
corresponding setting in the ith parameter group. This permits
the passing of tensors requiring gradient to differentiable
optimizers for use as optimizer settings.

	grad_callback – (optional) a single argument function which will be
applied to a list of gradients of parameters, which respects the
order specified by reference_params. This can be used to
apply a function, such as gradient clipping, to all (or a
subset) of these gradients every time the step function is
called. If this keyword argument is provided when calling the
step method, its value will override the default specified here.

	track_higher_grads – if True, during unrolled optimization the graph
be retained, and the fast weights will bear grad funcs, so as to
permit backpropagation through the optimization process. Setting
this to False allows the differentiable optimizer to be used in
“test mode”, without potentially tracking higher order
gradients. This can be useful when running the training loop at
test time, e.g. in k-shot learning experiments, without
incurring a significant memory overhead.

	
class higher.optim.DifferentiableAdadelta(other, reference_params, fmodel=None, device=None, override=None, grad_callback=None, track_higher_grads=True, **kwargs)

	A differentiable version of the Adadelta optimizer.

This optimizer creates a gradient tape as it updates parameters.

Initialize the optimizer with the state of an existing optimizer.

	Parameters

	
	other – an existing optimizer instance.

	reference_params – an iterable over the parameters of the original
model.

	fmodel (optional) – a patched stateless module with a view on
weights.

	device (optional) – the device to cast state tensors to.

	override (optional) – a dictionary mapping optimizer settings (i.e.
those which would be passed to the optimizer constructor or
provided within parameter groups) to either singleton lists of
override values, or to a list of override values of length equal
to the number of parameter groups. If a single override is
provided for a keyword, it is used for all parameter groups. If
a list is provided, the ith element of the list overrides the
corresponding setting in the ith parameter group. This permits
the passing of tensors requiring gradient to differentiable
optimizers for use as optimizer settings.

	grad_callback – (optional) a single argument function which will be
applied to a list of gradients of parameters, which respects the
order specified by reference_params. This can be used to
apply a function, such as gradient clipping, to all (or a
subset) of these gradients every time the step function is
called. If this keyword argument is provided when calling the
step method, its value will override the default specified here.

	track_higher_grads – if True, during unrolled optimization the graph
be retained, and the fast weights will bear grad funcs, so as to
permit backpropagation through the optimization process. Setting
this to False allows the differentiable optimizer to be used in
“test mode”, without potentially tracking higher order
gradients. This can be useful when running the training loop at
test time, e.g. in k-shot learning experiments, without
incurring a significant memory overhead.

	
class higher.optim.DifferentiableAdagrad(other, reference_params, fmodel=None, device=None, override=None, grad_callback=None, track_higher_grads=True, **kwargs)

	A differentiable version of the Adagrad optimizer.

This optimizer creates a gradient tape as it updates parameters.

Initialize the optimizer with the state of an existing optimizer.

	Parameters

	
	other – an existing optimizer instance.

	reference_params – an iterable over the parameters of the original
model.

	fmodel (optional) – a patched stateless module with a view on
weights.

	device (optional) – the device to cast state tensors to.

	override (optional) – a dictionary mapping optimizer settings (i.e.
those which would be passed to the optimizer constructor or
provided within parameter groups) to either singleton lists of
override values, or to a list of override values of length equal
to the number of parameter groups. If a single override is
provided for a keyword, it is used for all parameter groups. If
a list is provided, the ith element of the list overrides the
corresponding setting in the ith parameter group. This permits
the passing of tensors requiring gradient to differentiable
optimizers for use as optimizer settings.

	grad_callback – (optional) a single argument function which will be
applied to a list of gradients of parameters, which respects the
order specified by reference_params. This can be used to
apply a function, such as gradient clipping, to all (or a
subset) of these gradients every time the step function is
called. If this keyword argument is provided when calling the
step method, its value will override the default specified here.

	track_higher_grads – if True, during unrolled optimization the graph
be retained, and the fast weights will bear grad funcs, so as to
permit backpropagation through the optimization process. Setting
this to False allows the differentiable optimizer to be used in
“test mode”, without potentially tracking higher order
gradients. This can be useful when running the training loop at
test time, e.g. in k-shot learning experiments, without
incurring a significant memory overhead.

	
class higher.optim.DifferentiableAdam(other, reference_params, fmodel=None, device=None, override=None, grad_callback=None, track_higher_grads=True, **kwargs)

	A differentiable version of the Adam optimizer.

This optimizer creates a gradient tape as it updates parameters.

Initialize the optimizer with the state of an existing optimizer.

	Parameters

	
	other – an existing optimizer instance.

	reference_params – an iterable over the parameters of the original
model.

	fmodel (optional) – a patched stateless module with a view on
weights.

	device (optional) – the device to cast state tensors to.

	override (optional) – a dictionary mapping optimizer settings (i.e.
those which would be passed to the optimizer constructor or
provided within parameter groups) to either singleton lists of
override values, or to a list of override values of length equal
to the number of parameter groups. If a single override is
provided for a keyword, it is used for all parameter groups. If
a list is provided, the ith element of the list overrides the
corresponding setting in the ith parameter group. This permits
the passing of tensors requiring gradient to differentiable
optimizers for use as optimizer settings.

	grad_callback – (optional) a single argument function which will be
applied to a list of gradients of parameters, which respects the
order specified by reference_params. This can be used to
apply a function, such as gradient clipping, to all (or a
subset) of these gradients every time the step function is
called. If this keyword argument is provided when calling the
step method, its value will override the default specified here.

	track_higher_grads – if True, during unrolled optimization the graph
be retained, and the fast weights will bear grad funcs, so as to
permit backpropagation through the optimization process. Setting
this to False allows the differentiable optimizer to be used in
“test mode”, without potentially tracking higher order
gradients. This can be useful when running the training loop at
test time, e.g. in k-shot learning experiments, without
incurring a significant memory overhead.

	
class higher.optim.DifferentiableAdamW(other, reference_params, fmodel=None, device=None, override=None, grad_callback=None, track_higher_grads=True, **kwargs)

	A differentiable version of the AdamW optimizer.

This optimizer creates a gradient tape as it updates parameters.

Initialize the optimizer with the state of an existing optimizer.

	Parameters

	
	other – an existing optimizer instance.

	reference_params – an iterable over the parameters of the original
model.

	fmodel (optional) – a patched stateless module with a view on
weights.

	device (optional) – the device to cast state tensors to.

	override (optional) – a dictionary mapping optimizer settings (i.e.
those which would be passed to the optimizer constructor or
provided within parameter groups) to either singleton lists of
override values, or to a list of override values of length equal
to the number of parameter groups. If a single override is
provided for a keyword, it is used for all parameter groups. If
a list is provided, the ith element of the list overrides the
corresponding setting in the ith parameter group. This permits
the passing of tensors requiring gradient to differentiable
optimizers for use as optimizer settings.

	grad_callback – (optional) a single argument function which will be
applied to a list of gradients of parameters, which respects the
order specified by reference_params. This can be used to
apply a function, such as gradient clipping, to all (or a
subset) of these gradients every time the step function is
called. If this keyword argument is provided when calling the
step method, its value will override the default specified here.

	track_higher_grads – if True, during unrolled optimization the graph
be retained, and the fast weights will bear grad funcs, so as to
permit backpropagation through the optimization process. Setting
this to False allows the differentiable optimizer to be used in
“test mode”, without potentially tracking higher order
gradients. This can be useful when running the training loop at
test time, e.g. in k-shot learning experiments, without
incurring a significant memory overhead.

	
class higher.optim.DifferentiableAdamax(other, reference_params, fmodel=None, device=None, override=None, grad_callback=None, track_higher_grads=True, **kwargs)

	A differentiable version of the Adamax optimizer.

This optimizer creates a gradient tape as it updates parameters.

Initialize the optimizer with the state of an existing optimizer.

	Parameters

	
	other – an existing optimizer instance.

	reference_params – an iterable over the parameters of the original
model.

	fmodel (optional) – a patched stateless module with a view on
weights.

	device (optional) – the device to cast state tensors to.

	override (optional) – a dictionary mapping optimizer settings (i.e.
those which would be passed to the optimizer constructor or
provided within parameter groups) to either singleton lists of
override values, or to a list of override values of length equal
to the number of parameter groups. If a single override is
provided for a keyword, it is used for all parameter groups. If
a list is provided, the ith element of the list overrides the
corresponding setting in the ith parameter group. This permits
the passing of tensors requiring gradient to differentiable
optimizers for use as optimizer settings.

	grad_callback – (optional) a single argument function which will be
applied to a list of gradients of parameters, which respects the
order specified by reference_params. This can be used to
apply a function, such as gradient clipping, to all (or a
subset) of these gradients every time the step function is
called. If this keyword argument is provided when calling the
step method, its value will override the default specified here.

	track_higher_grads – if True, during unrolled optimization the graph
be retained, and the fast weights will bear grad funcs, so as to
permit backpropagation through the optimization process. Setting
this to False allows the differentiable optimizer to be used in
“test mode”, without potentially tracking higher order
gradients. This can be useful when running the training loop at
test time, e.g. in k-shot learning experiments, without
incurring a significant memory overhead.

	
class higher.optim.DifferentiableOptimizer(other, reference_params, fmodel=None, device=None, override=None, grad_callback=None, track_higher_grads=True, **kwargs)

	Initialize the optimizer with the state of an existing optimizer.

	Parameters

	
	other – an existing optimizer instance.

	reference_params – an iterable over the parameters of the original
model.

	fmodel (optional) – a patched stateless module with a view on
weights.

	device (optional) – the device to cast state tensors to.

	override (optional) – a dictionary mapping optimizer settings (i.e.
those which would be passed to the optimizer constructor or
provided within parameter groups) to either singleton lists of
override values, or to a list of override values of length equal
to the number of parameter groups. If a single override is
provided for a keyword, it is used for all parameter groups. If
a list is provided, the ith element of the list overrides the
corresponding setting in the ith parameter group. This permits
the passing of tensors requiring gradient to differentiable
optimizers for use as optimizer settings.

	grad_callback – (optional) a single argument function which will be
applied to a list of gradients of parameters, which respects the
order specified by reference_params. This can be used to
apply a function, such as gradient clipping, to all (or a
subset) of these gradients every time the step function is
called. If this keyword argument is provided when calling the
step method, its value will override the default specified here.

	track_higher_grads – if True, during unrolled optimization the graph
be retained, and the fast weights will bear grad funcs, so as to
permit backpropagation through the optimization process. Setting
this to False allows the differentiable optimizer to be used in
“test mode”, without potentially tracking higher order
gradients. This can be useful when running the training loop at
test time, e.g. in k-shot learning experiments, without
incurring a significant memory overhead.

	
step(loss, params=None, override=None, grad_callback=None, **kwargs)

	Perform a model update.

This would be used by replacing the normal sequence:

opt.zero_grad()
loss.backward()
opt.step()

with:

diffopt.step(loss)

	Parameters

	
	loss – the loss tensor.

	params (optional) – the parameters with regard to which we measure
the loss. These must be provided if the differentiable optimizer
did not receive a patched model with a view over its own fast
weights at initialisation. If there is such a model, and params
are provided, they will overwrite the params of the encapsulated
model.

	override (optional) – a dictionary mapping optimizer settings (i.e.
those which would be passed to the optimizer constructor or
provided within parameter groups) to either singleton lists of
override values, or to a list of override values of length equal
to the number of parameter groups. If a single override is
provided for a keyword, it is used for all parameter groups. If
a list is provided, the ith element of the list overrides
the corresponding setting in the ith parameter group. This
permits the passing of tensors requiring gradient to
differentiable optimizers for use as optimizer settings. Setting
override here has highest precedence, i.e. it will override any
tensors provided as override during the creation of the
differentiable optimizer, where there is name clash.

	grad_callback – (optional) a single argument function which will be
applied to a list of gradients of parameters, which respects the
order specified by reference_params. This can be used to
apply a function, such as gradient clipping, to all (or a
subset) of these gradients every time the step function is
called. This callback overrides the default provided when
constructing the differentiable optimizer.

	Returns

	The updated parameters, which will individually have grad_fns
of their own. If the optimizer has an encapsulated patched model,
its view over its own fast weights will be updated with these
params.

	Return type

	Iterable[Tensor]

	
class higher.optim.DifferentiableRMSprop(*args, **kwargs)

	A differentiable version of the RMSprop optimizer.

This optimizer creates a gradient tape as it updates parameters.

Initialize the optimizer with the state of an existing optimizer.

	Parameters

	
	other – an existing optimizer instance.

	reference_params – an iterable over the parameters of the original
model.

	fmodel (optional) – a patched stateless module with a view on
weights.

	device (optional) – the device to cast state tensors to.

	override (optional) – a dictionary mapping optimizer settings (i.e.
those which would be passed to the optimizer constructor or
provided within parameter groups) to either singleton lists of
override values, or to a list of override values of length equal
to the number of parameter groups. If a single override is
provided for a keyword, it is used for all parameter groups. If
a list is provided, the ith element of the list overrides the
corresponding setting in the ith parameter group. This permits
the passing of tensors requiring gradient to differentiable
optimizers for use as optimizer settings.

	grad_callback – (optional) a single argument function which will be
applied to a list of gradients of parameters, which respects the
order specified by reference_params. This can be used to
apply a function, such as gradient clipping, to all (or a
subset) of these gradients every time the step function is
called. If this keyword argument is provided when calling the
step method, its value will override the default specified here.

	track_higher_grads – if True, during unrolled optimization the graph
be retained, and the fast weights will bear grad funcs, so as to
permit backpropagation through the optimization process. Setting
this to False allows the differentiable optimizer to be used in
“test mode”, without potentially tracking higher order
gradients. This can be useful when running the training loop at
test time, e.g. in k-shot learning experiments, without
incurring a significant memory overhead.

	
class higher.optim.DifferentiableRprop(*args, **kwargs)

	A differentiable version of the Rprop optimizer.

This optimizer creates a gradient tape as it updates parameters.

Initialize the optimizer with the state of an existing optimizer.

	Parameters

	
	other – an existing optimizer instance.

	reference_params – an iterable over the parameters of the original
model.

	fmodel (optional) – a patched stateless module with a view on
weights.

	device (optional) – the device to cast state tensors to.

	override (optional) – a dictionary mapping optimizer settings (i.e.
those which would be passed to the optimizer constructor or
provided within parameter groups) to either singleton lists of
override values, or to a list of override values of length equal
to the number of parameter groups. If a single override is
provided for a keyword, it is used for all parameter groups. If
a list is provided, the ith element of the list overrides the
corresponding setting in the ith parameter group. This permits
the passing of tensors requiring gradient to differentiable
optimizers for use as optimizer settings.

	grad_callback – (optional) a single argument function which will be
applied to a list of gradients of parameters, which respects the
order specified by reference_params. This can be used to
apply a function, such as gradient clipping, to all (or a
subset) of these gradients every time the step function is
called. If this keyword argument is provided when calling the
step method, its value will override the default specified here.

	track_higher_grads – if True, during unrolled optimization the graph
be retained, and the fast weights will bear grad funcs, so as to
permit backpropagation through the optimization process. Setting
this to False allows the differentiable optimizer to be used in
“test mode”, without potentially tracking higher order
gradients. This can be useful when running the training loop at
test time, e.g. in k-shot learning experiments, without
incurring a significant memory overhead.

	
class higher.optim.DifferentiableSGD(other, reference_params, fmodel=None, device=None, override=None, grad_callback=None, track_higher_grads=True, **kwargs)

	A differentiable version of the SGD optimizer.

This optimizer creates a gradient tape as it updates parameters.

Initialize the optimizer with the state of an existing optimizer.

	Parameters

	
	other – an existing optimizer instance.

	reference_params – an iterable over the parameters of the original
model.

	fmodel (optional) – a patched stateless module with a view on
weights.

	device (optional) – the device to cast state tensors to.

	override (optional) – a dictionary mapping optimizer settings (i.e.
those which would be passed to the optimizer constructor or
provided within parameter groups) to either singleton lists of
override values, or to a list of override values of length equal
to the number of parameter groups. If a single override is
provided for a keyword, it is used for all parameter groups. If
a list is provided, the ith element of the list overrides the
corresponding setting in the ith parameter group. This permits
the passing of tensors requiring gradient to differentiable
optimizers for use as optimizer settings.

	grad_callback – (optional) a single argument function which will be
applied to a list of gradients of parameters, which respects the
order specified by reference_params. This can be used to
apply a function, such as gradient clipping, to all (or a
subset) of these gradients every time the step function is
called. If this keyword argument is provided when calling the
step method, its value will override the default specified here.

	track_higher_grads – if True, during unrolled optimization the graph
be retained, and the fast weights will bear grad funcs, so as to
permit backpropagation through the optimization process. Setting
this to False allows the differentiable optimizer to be used in
“test mode”, without potentially tracking higher order
gradients. This can be useful when running the training loop at
test time, e.g. in k-shot learning experiments, without
incurring a significant memory overhead.

	
higher.optim.apply_trainable_opt_params(opt, override)

	Apply learned hyperparameters back to original optimizer.

	Parameters

	
	opt – the original optimizer. The hyperparameters in its parameter groups
will be modified in place.

	override – dictionary of the format used for the override kwarg of
differentiable optimizers.

	Return type

	None

	
higher.optim.create_diff_optim(opt_type, opt_kwargs=None, params=None, fmodel=None, device=None, override=None, track_higher_grads=True, **kwargs)

	Construct a differentiable version of an new optimizer.

	Parameters

	
	opt_type – the type (constructor) for a torch.optim.Optimizer subtype
from amongst the types supported by the library, or registered with
it a runtime.

	opt_kwargs – a dictionary of keywords to be passed to the optimizer
constructor.

	params (optional) – a list of (fast) weights which the differentiable
optimizer will update. These must be provided if fmodel is not
provided. If both, these will be used in lieu. These will only
be used for shape inference when initializing the optimizer.
This argument can also take the same format as parameter groups,
i.e. an iterable over dictionaries which contain the ‘params’ key
with fast weights as value, and group-specific hyperparameters.

	fmodel (optional) – a patched version of the module tracked by opt.
It is assumed this patched instance has a view on its latest fast
weights through fmodel.parameters(). If provided, it is not
necessary to pass the fast weights explicitly to the differentiable
optimizer’s step function via the keyword arg params. If not
provided, the fast weights to update must be provided to step.

	device (optional) – the device to cast the optimizer state to when
creating the differentiable optimizer. If not provided, the same
device as used for the parameters tracked by opt will be used.

	override (optional) – a dictionary mapping optimizer settings (i.e.
those which would be passed to the optimizer constructor or
provided within parameter groups) to either singleton lists of
override values, or to a list of override values of length equal to
the number of parameter groups. If a single override is provided for
a keyword, it is used for all parameter groups. If a list is
provided, the ith element of the list overrides the corresponding
setting in the ith parameter group. This permits the passing of
tensors requiring gradient to differentiable optimizers for use as
optimizer settings.

	track_higher_grads – if True, during unrolled optimization the graph be
retained, and the fast weights will bear grad funcs, so as to permit
backpropagation through the optimization process. Setting this to
False allows the returned differentiable optimizer to be used in
“test mode”, without potentially tracking higher order gradients.
This can be useful when running the training loop at test time,
e.g. in k-shot learning experiments, without incurring a significant
memory overhead.

	Returns

	An initialized DifferentiableOptimizer instance of the right subtype.

	Return type

	DifferentiableOptimizer

	
higher.optim.get_diff_optim(opt, reference_params, fmodel=None, device=None, override=None, track_higher_grads=True, **kwargs)

	Construct/initialize a differentiable version of an existing optimizer.

	Parameters

	
	opt – an existing optimizer, assumed to be an instance of
torch.optim.Optimizer, of a supported type which is either defined
in torch.optim, or a custom implemantation which has been added to
higher at runtime by using higher.register_optim. We assume this
optimizer tracks the parameters (or some subset thereof) of a single
torch.nn.Module instance, with support for parameter groups.

	reference_params – the parameters of the module tracked by opt, as
returned by module.parameters().

	fmodel (optional) – a patched version of the module tracked by opt.
It is assumed this patched instance has a view on its latest fast
weights through fmodel.parameters(). If provided, it is not
necessary to pass the fast weights explicitly to the differentiable
optimizer’s step function via the keyword arg params. If not
provided, the fast weights to update must be provided to step.

	device (optional) – the device to cast the optimizer state to when
creating the differentiable optimizer. If not provided, the same
device as used for the parameters tracked by opt will be used.

	override (optional) – a dictionary mapping optimizer settings (i.e.
those which would be passed to the optimizer constructor or
provided within parameter groups) to either singleton lists of
override values, or to a list of override values of length equal to
the number of parameter groups. If a single override is provided for
a keyword, it is used for all parameter groups. If a list is
provided, the ith element of the list overrides the corresponding
setting in the ith parameter group. This permits the passing of
tensors requiring gradient to differentiable optimizers for use as
optimizer settings.

	track_higher_grads – if True, during unrolled optimization the graph be
retained, and the fast weights will bear grad funcs, so as to permit
backpropagation through the optimization process. Setting this to
False allows the returned differentiable optimizer to be used in
“test mode”, without potentially tracking higher order gradients.
This can be useful when running the training loop at test time,
e.g. in k-shot learning experiments, without incurring a significant
memory overhead.

	Returns

	An initialized DifferentiableOptimizer instance of the right subtype.

	Return type

	DifferentiableOptimizer

	
higher.optim.get_trainable_opt_params(opt, device=None)

	Get an override dictionary from an optimizer instance.

	Parameters

	
	opt – the optimizer to obtain an override dictionary from.

	device (optional) – the device to cast the learnable tensors to.

	Returns

	A dictionary of the format expected for the override kwarg of
differentiable optimizers. It is initialized with trainable tensors
with as values those float and int hyperparameters found in the
optimizer’s parameter groups (or stuctures containing these).
Heuristically, hyperparameters containing mixtures of differentiable
and non-differentiable types will be ignored (and must be manually
specified when constructing an override dict).

	Return type

	Dict[str, List[Any]]

	
higher.optim.register_optim(optim_type, diff_optim_type)

	Registers a new optimizer type for use with higher functions.

	Parameters

	
	optim_type – the type of a new optimizer, assumed to be an instance of
torch.optim.Optimizer.

	diff_optim_type – the type of a new differentiable optimizer, assumed to
be an instance of higher.optim.DifferentiableOptimizer with
functionally equivalent logic to optim_type.

	Return type

	None

Utility Functions

Utility functions for components of higher.

	
higher.utils.flatten(x)

	Returns a flattened list of objects from a nested structure.

	Return type

	List[Any]

	
higher.utils.get_func_params(module, device=None, safe_copy=True)

	Returns a detached copy of module parameters which requires gradient.

	Return type

	List[Tensor]

 Python Module Index

 h

 		 	

 		
 h	

 	[image: -]
 	
 higher	

 	
 	
 higher.optim	

 	
 	
 higher.patch	

 	
 	
 higher.utils	

Index

 A
 | B
 | C
 | D
 | F
 | G
 | H
 | I
 | M
 | R
 | S

A

 	
 	apply_trainable_opt_params() (in module higher.optim)

B

 	
 	buffer_sync() (in module higher.patch)

C

 	
 	create_diff_optim() (in module higher.optim)

D

 	
 	DifferentiableAdadelta (class in higher.optim)

 	DifferentiableAdagrad (class in higher.optim)

 	DifferentiableAdam (class in higher.optim)

 	DifferentiableAdamax (class in higher.optim)

 	DifferentiableAdamW (class in higher.optim)

 	
 	DifferentiableASGD (class in higher.optim)

 	DifferentiableOptimizer (class in higher.optim)

 	DifferentiableRMSprop (class in higher.optim)

 	DifferentiableRprop (class in higher.optim)

 	DifferentiableSGD (class in higher.optim)

F

 	
 	flatten() (in module higher.utils)

G

 	
 	get_diff_optim() (in module higher.optim)

 	
 	get_func_params() (in module higher.utils)

 	get_trainable_opt_params() (in module higher.optim)

H

 	
 	
 higher

 	module

 	
 higher.optim

 	module

 	
 	
 higher.patch

 	module

 	
 higher.utils

 	module

I

 	
 	innerloop_ctx() (in module higher)

M

 	
 	make_functional() (in module higher.patch)

 	
 module

 	higher

 	higher.optim

 	higher.patch

 	higher.utils

 	
 	monkeypatch() (in module higher.patch)

R

 	
 	register_optim() (in module higher.optim)

S

 	
 	step() (higher.optim.DifferentiableOptimizer method)

 nav.xhtml

 Table of Contents

 		
 higher documentation

 		
 Top-Level Functions

 		
 Monkey-Patching Functions

 		
 Differentiable Optimizers

 		
 Utility Functions

_static/minus.png

_static/plus.png

_static/file.png

