
higher
Release 0.2.1

Facebook AI Research (FAIR)

Jul 14, 2020

LIBRARY REFERENCE:

1 Top-Level Functions 3

2 Monkey-Patching Functions 5

3 Differentiable Optimizers 7

4 Utility Functions 17

5 Indices and tables 19

Python Module Index 21

Index 23

i

ii

higher, Release 0.2.1

higher is a library providing support for higher-order optimization, e.g. through unrolled first-order optimization
loops, of “meta” aspects of these loops. It provides tools for turning existing torch.nn.Module instances “stateless”,
meaning that changes to the parameters thereof can be tracked, and gradient with regard to intermediate parameters can
be taken. It also provides a suite of differentiable optimizers, to facilitate the implementation of various meta-learning
approaches.

LIBRARY REFERENCE: 1

higher, Release 0.2.1

2 LIBRARY REFERENCE:

CHAPTER

ONE

TOP-LEVEL FUNCTIONS

higher.innerloop_ctx(model, opt, device=None, copy_initial_weights=True, override=None,
track_higher_grads=True)

A context manager for writing differentiable inner loops.

Parameters

• model – a torch.nn.Module subclass instance.

• opt – an existing optimizer, assumed to be an instance of torch.optim.Optimizer,
of a supported type which is either defined in torch.optim, or a custom implemantation
which has been added to higher at runtime by using higher.register_optim. We
assume this optimizer tracks the parameters (or some subset thereof) of a single torch.
nn.Module instance, with support for parameter groups.

• device (optional) – a device to cast the fast weights and state to. If not specified, the
device used for corresponding weights of model will be used.

• copy_initial_weights – if true, the weights of the patched module are copied to
form the initial weights of the patched module, and thus are not part of the gradient tape
when unrolling the patched module. If this is set to False, the actual module weights will be
the initial weights of the patched module. This is useful when doing MAML, for example.

• override (optional) – a dictionary mapping optimizer settings (i.e. those which would
be passed to the optimizer constructor or provided within parameter groups) to either sin-
gleton lists of override values, or to a list of override values of length equal to the number
of parameter groups. If a single override is provided for a keyword, it is used for all pa-
rameter groups. If a list is provided, the ith element of the list overrides the corresponding
setting in the ith parameter group. This permits the passing of tensors requiring gradient to
differentiable optimizers for use as optimizer settings.

• track_higher_grads – if True, during unrolled optimization the graph be retained,
and the fast weights will bear grad funcs, so as to permit backpropagation through the opti-
mization process. Setting this to False allows innerloop_ctx to be used in “test mode”,
without potentially tracking higher order gradients. This can be useful when running the
training loop at test time, e.g. in k-shot learning experiments, without incurring a significant
memory overhead.

Yields A (fmodule, diffopt) tuple. where fmodule is a “stateless” version of the original
module, for which calls to forward take the additional kwarg-only parameter params, which
should be a list of torch tensors requiring gradients, ideally provided by this function (see below)
or by an update step from one of the optimizers in higher.optim. And diffopt is an
initialized DifferentiableOptimizer instance of the right subtype.

3

higher, Release 0.2.1

4 Chapter 1. Top-Level Functions

CHAPTER

TWO

MONKEY-PATCHING FUNCTIONS

Functions for making torch.nn.Module subclass instances stateless.

higher.patch.buffer_sync(module, fmodule, device=None)
One off sync (copy) of buffers in fmodule with those from module.

Return type None

higher.patch.make_functional(module, encapsulator=None)
Returns a stateless version of an nn.Module instance.

Return type _MonkeyPatchBase

higher.patch.monkeypatch(module, device=None, copy_initial_weights=True,
track_higher_grads=True)

Create a monkey-patched stateless version of a module.

This function produces a monkey-patched version of a module, and returns a copy of its parameters for use as
fast weights. Where the original module or any of its submodules have state (e.g. batch norm), this will be
copied too, but further updates (e.g. during inner loop training) will cause these to diverge without changing the
state of the original module.

Parameters

• module – a torch.nn.Module subclass instance.

• device (optional) – a device to cast the fast weights and state to.

• copy_initial_weights – if True, the weights of the patched module are copied to
form the initial weights of the patched module, and thus are not part of the gradient tape
when unrolling the patched module. If this is set to False, the actual module weights will be
the initial weights of the patched module. This is useful when doing MAML, for example.

• track_higher_grads – if True, during unrolled optimization the graph be retained,
and the fast weights will bear grad funcs, so as to permit backpropagation through the op-
timization process. Setting this to False allows monkeypatch to be used in “test mode”,
without potentially tracking higher order gradients. This can be useful when running the
training loop at test time, e.g. in k-shot learning experiments, without incurring a significant
memory overhead.

Returns a “stateless” version of the original module, for which calls to forward take the additional
kwarg-only parameter params, which should be a list of torch tensors requiring gradients,
ideally provided by this function (see below) or by an update step from one of the optimizers in
higher.optim.

Return type fmodule

Return type _MonkeyPatchBase

5

higher, Release 0.2.1

6 Chapter 2. Monkey-Patching Functions

CHAPTER

THREE

DIFFERENTIABLE OPTIMIZERS

Differentiable optimizer wrappers around torch.optim instances.

class higher.optim.DifferentiableASGD(other, reference_params, fmodel=None, de-
vice=None, override=None, grad_callback=None,
track_higher_grads=True, **kwargs)

A differentiable version of the ASGD optimizer.

This optimizer creates a gradient tape as it updates parameters.

Initialize the optimizer with the state of an existing optimizer.

Parameters

• other – an existing optimizer instance.

• reference_params – an iterable over the parameters of the original model.

• fmodel (optional) – a patched stateless module with a view on weights.

• device (optional) – the device to cast state tensors to.

• override (optional) – a dictionary mapping optimizer settings (i.e. those which would
be passed to the optimizer constructor or provided within parameter groups) to either sin-
gleton lists of override values, or to a list of override values of length equal to the number
of parameter groups. If a single override is provided for a keyword, it is used for all pa-
rameter groups. If a list is provided, the ith element of the list overrides the corresponding
setting in the ith parameter group. This permits the passing of tensors requiring gradient to
differentiable optimizers for use as optimizer settings.

• grad_callback – (optional) a single argument function which will be applied to a list
of gradients of parameters, which respects the order specified by reference_params.
This can be used to apply a function, such as gradient clipping, to all (or a subset) of these
gradients every time the step function is called. If this keyword argument is provided when
calling the step method, its value will override the default specified here.

• track_higher_grads – if True, during unrolled optimization the graph be retained,
and the fast weights will bear grad funcs, so as to permit backpropagation through the op-
timization process. Setting this to False allows the differentiable optimizer to be used in
“test mode”, without potentially tracking higher order gradients. This can be useful when
running the training loop at test time, e.g. in k-shot learning experiments, without incurring
a significant memory overhead.

class higher.optim.DifferentiableAdadelta(other, reference_params,
fmodel=None, device=None, over-
ride=None, grad_callback=None,
track_higher_grads=True, **kwargs)

A differentiable version of the Adadelta optimizer.

7

higher, Release 0.2.1

This optimizer creates a gradient tape as it updates parameters.

Initialize the optimizer with the state of an existing optimizer.

Parameters

• other – an existing optimizer instance.

• reference_params – an iterable over the parameters of the original model.

• fmodel (optional) – a patched stateless module with a view on weights.

• device (optional) – the device to cast state tensors to.

• override (optional) – a dictionary mapping optimizer settings (i.e. those which would
be passed to the optimizer constructor or provided within parameter groups) to either sin-
gleton lists of override values, or to a list of override values of length equal to the number
of parameter groups. If a single override is provided for a keyword, it is used for all pa-
rameter groups. If a list is provided, the ith element of the list overrides the corresponding
setting in the ith parameter group. This permits the passing of tensors requiring gradient to
differentiable optimizers for use as optimizer settings.

• grad_callback – (optional) a single argument function which will be applied to a list
of gradients of parameters, which respects the order specified by reference_params.
This can be used to apply a function, such as gradient clipping, to all (or a subset) of these
gradients every time the step function is called. If this keyword argument is provided when
calling the step method, its value will override the default specified here.

• track_higher_grads – if True, during unrolled optimization the graph be retained,
and the fast weights will bear grad funcs, so as to permit backpropagation through the op-
timization process. Setting this to False allows the differentiable optimizer to be used in
“test mode”, without potentially tracking higher order gradients. This can be useful when
running the training loop at test time, e.g. in k-shot learning experiments, without incurring
a significant memory overhead.

class higher.optim.DifferentiableAdagrad(other, reference_params, fmodel=None,
device=None, override=None,
grad_callback=None, track_higher_grads=True,
**kwargs)

A differentiable version of the Adagrad optimizer.

This optimizer creates a gradient tape as it updates parameters.

Initialize the optimizer with the state of an existing optimizer.

Parameters

• other – an existing optimizer instance.

• reference_params – an iterable over the parameters of the original model.

• fmodel (optional) – a patched stateless module with a view on weights.

• device (optional) – the device to cast state tensors to.

• override (optional) – a dictionary mapping optimizer settings (i.e. those which would
be passed to the optimizer constructor or provided within parameter groups) to either sin-
gleton lists of override values, or to a list of override values of length equal to the number
of parameter groups. If a single override is provided for a keyword, it is used for all pa-
rameter groups. If a list is provided, the ith element of the list overrides the corresponding
setting in the ith parameter group. This permits the passing of tensors requiring gradient to
differentiable optimizers for use as optimizer settings.

8 Chapter 3. Differentiable Optimizers

higher, Release 0.2.1

• grad_callback – (optional) a single argument function which will be applied to a list
of gradients of parameters, which respects the order specified by reference_params.
This can be used to apply a function, such as gradient clipping, to all (or a subset) of these
gradients every time the step function is called. If this keyword argument is provided when
calling the step method, its value will override the default specified here.

• track_higher_grads – if True, during unrolled optimization the graph be retained,
and the fast weights will bear grad funcs, so as to permit backpropagation through the op-
timization process. Setting this to False allows the differentiable optimizer to be used in
“test mode”, without potentially tracking higher order gradients. This can be useful when
running the training loop at test time, e.g. in k-shot learning experiments, without incurring
a significant memory overhead.

class higher.optim.DifferentiableAdam(other, reference_params, fmodel=None, de-
vice=None, override=None, grad_callback=None,
track_higher_grads=True, **kwargs)

A differentiable version of the Adam optimizer.

This optimizer creates a gradient tape as it updates parameters.

Initialize the optimizer with the state of an existing optimizer.

Parameters

• other – an existing optimizer instance.

• reference_params – an iterable over the parameters of the original model.

• fmodel (optional) – a patched stateless module with a view on weights.

• device (optional) – the device to cast state tensors to.

• override (optional) – a dictionary mapping optimizer settings (i.e. those which would
be passed to the optimizer constructor or provided within parameter groups) to either sin-
gleton lists of override values, or to a list of override values of length equal to the number
of parameter groups. If a single override is provided for a keyword, it is used for all pa-
rameter groups. If a list is provided, the ith element of the list overrides the corresponding
setting in the ith parameter group. This permits the passing of tensors requiring gradient to
differentiable optimizers for use as optimizer settings.

• grad_callback – (optional) a single argument function which will be applied to a list
of gradients of parameters, which respects the order specified by reference_params.
This can be used to apply a function, such as gradient clipping, to all (or a subset) of these
gradients every time the step function is called. If this keyword argument is provided when
calling the step method, its value will override the default specified here.

• track_higher_grads – if True, during unrolled optimization the graph be retained,
and the fast weights will bear grad funcs, so as to permit backpropagation through the op-
timization process. Setting this to False allows the differentiable optimizer to be used in
“test mode”, without potentially tracking higher order gradients. This can be useful when
running the training loop at test time, e.g. in k-shot learning experiments, without incurring
a significant memory overhead.

class higher.optim.DifferentiableAdamax(other, reference_params, fmodel=None, de-
vice=None, override=None, grad_callback=None,
track_higher_grads=True, **kwargs)

A differentiable version of the Adamax optimizer.

This optimizer creates a gradient tape as it updates parameters.

Initialize the optimizer with the state of an existing optimizer.

9

higher, Release 0.2.1

Parameters

• other – an existing optimizer instance.

• reference_params – an iterable over the parameters of the original model.

• fmodel (optional) – a patched stateless module with a view on weights.

• device (optional) – the device to cast state tensors to.

• override (optional) – a dictionary mapping optimizer settings (i.e. those which would
be passed to the optimizer constructor or provided within parameter groups) to either sin-
gleton lists of override values, or to a list of override values of length equal to the number
of parameter groups. If a single override is provided for a keyword, it is used for all pa-
rameter groups. If a list is provided, the ith element of the list overrides the corresponding
setting in the ith parameter group. This permits the passing of tensors requiring gradient to
differentiable optimizers for use as optimizer settings.

• grad_callback – (optional) a single argument function which will be applied to a list
of gradients of parameters, which respects the order specified by reference_params.
This can be used to apply a function, such as gradient clipping, to all (or a subset) of these
gradients every time the step function is called. If this keyword argument is provided when
calling the step method, its value will override the default specified here.

• track_higher_grads – if True, during unrolled optimization the graph be retained,
and the fast weights will bear grad funcs, so as to permit backpropagation through the op-
timization process. Setting this to False allows the differentiable optimizer to be used in
“test mode”, without potentially tracking higher order gradients. This can be useful when
running the training loop at test time, e.g. in k-shot learning experiments, without incurring
a significant memory overhead.

class higher.optim.DifferentiableOptimizer(other, reference_params,
fmodel=None, device=None, over-
ride=None, grad_callback=None,
track_higher_grads=True, **kwargs)

Initialize the optimizer with the state of an existing optimizer.

Parameters

• other – an existing optimizer instance.

• reference_params – an iterable over the parameters of the original model.

• fmodel (optional) – a patched stateless module with a view on weights.

• device (optional) – the device to cast state tensors to.

• override (optional) – a dictionary mapping optimizer settings (i.e. those which would
be passed to the optimizer constructor or provided within parameter groups) to either sin-
gleton lists of override values, or to a list of override values of length equal to the number
of parameter groups. If a single override is provided for a keyword, it is used for all pa-
rameter groups. If a list is provided, the ith element of the list overrides the corresponding
setting in the ith parameter group. This permits the passing of tensors requiring gradient to
differentiable optimizers for use as optimizer settings.

• grad_callback – (optional) a single argument function which will be applied to a list
of gradients of parameters, which respects the order specified by reference_params.
This can be used to apply a function, such as gradient clipping, to all (or a subset) of these
gradients every time the step function is called. If this keyword argument is provided when
calling the step method, its value will override the default specified here.

10 Chapter 3. Differentiable Optimizers

higher, Release 0.2.1

• track_higher_grads – if True, during unrolled optimization the graph be retained,
and the fast weights will bear grad funcs, so as to permit backpropagation through the op-
timization process. Setting this to False allows the differentiable optimizer to be used in
“test mode”, without potentially tracking higher order gradients. This can be useful when
running the training loop at test time, e.g. in k-shot learning experiments, without incurring
a significant memory overhead.

step(loss, params=None, override=None, grad_callback=None, **kwargs)
Perform a model update.

This would be used by replacing the normal sequence:

opt.zero_grad()
loss.backward()
opt.step()

with:

diffopt.step(loss)

Parameters

• loss – the loss tensor.

• params (optional) – the parameters with regard to which we measure the loss. These
must be provided if the differentiable optimizer did not receive a patched model with a
view over its own fast weights at initialisation. If there is such a model, and params are
provided, they will overwrite the params of the encapsulated model.

• override (optional) – a dictionary mapping optimizer settings (i.e. those which
would be passed to the optimizer constructor or provided within parameter groups) to ei-
ther singleton lists of override values, or to a list of override values of length equal to the
number of parameter groups. If a single override is provided for a keyword, it is used for
all parameter groups. If a list is provided, the ith element of the list overrides the corre-
sponding setting in the ith parameter group. This permits the passing of tensors requiring
gradient to differentiable optimizers for use as optimizer settings. Setting override here
has highest precedence, i.e. it will override any tensors provided as override during the
creation of the differentiable optimizer, where there is name clash.

• grad_callback – (optional) a single argument function which will be applied to a list
of gradients of parameters, which respects the order specified by reference_params.
This can be used to apply a function, such as gradient clipping, to all (or a subset) of
these gradients every time the step function is called. This callback overrides the default
provided when constructing the differentiable optimizer.

Returns The updated parameters, which will individually have grad_fns of their own. If the
optimizer has an encapsulated patched model, its view over its own fast weights will be
updated with these params.

Return type Iterable[Tensor]

class higher.optim.DifferentiableRMSprop(*args, **kwargs)
A differentiable version of the RMSprop optimizer.

This optimizer creates a gradient tape as it updates parameters.

Initialize the optimizer with the state of an existing optimizer.

Parameters

11

higher, Release 0.2.1

• other – an existing optimizer instance.

• reference_params – an iterable over the parameters of the original model.

• fmodel (optional) – a patched stateless module with a view on weights.

• device (optional) – the device to cast state tensors to.

• override (optional) – a dictionary mapping optimizer settings (i.e. those which would
be passed to the optimizer constructor or provided within parameter groups) to either sin-
gleton lists of override values, or to a list of override values of length equal to the number
of parameter groups. If a single override is provided for a keyword, it is used for all pa-
rameter groups. If a list is provided, the ith element of the list overrides the corresponding
setting in the ith parameter group. This permits the passing of tensors requiring gradient to
differentiable optimizers for use as optimizer settings.

• grad_callback – (optional) a single argument function which will be applied to a list
of gradients of parameters, which respects the order specified by reference_params.
This can be used to apply a function, such as gradient clipping, to all (or a subset) of these
gradients every time the step function is called. If this keyword argument is provided when
calling the step method, its value will override the default specified here.

• track_higher_grads – if True, during unrolled optimization the graph be retained,
and the fast weights will bear grad funcs, so as to permit backpropagation through the op-
timization process. Setting this to False allows the differentiable optimizer to be used in
“test mode”, without potentially tracking higher order gradients. This can be useful when
running the training loop at test time, e.g. in k-shot learning experiments, without incurring
a significant memory overhead.

class higher.optim.DifferentiableRprop(*args, **kwargs)
A differentiable version of the Rprop optimizer.

This optimizer creates a gradient tape as it updates parameters.

Initialize the optimizer with the state of an existing optimizer.

Parameters

• other – an existing optimizer instance.

• reference_params – an iterable over the parameters of the original model.

• fmodel (optional) – a patched stateless module with a view on weights.

• device (optional) – the device to cast state tensors to.

• override (optional) – a dictionary mapping optimizer settings (i.e. those which would
be passed to the optimizer constructor or provided within parameter groups) to either sin-
gleton lists of override values, or to a list of override values of length equal to the number
of parameter groups. If a single override is provided for a keyword, it is used for all pa-
rameter groups. If a list is provided, the ith element of the list overrides the corresponding
setting in the ith parameter group. This permits the passing of tensors requiring gradient to
differentiable optimizers for use as optimizer settings.

• grad_callback – (optional) a single argument function which will be applied to a list
of gradients of parameters, which respects the order specified by reference_params.
This can be used to apply a function, such as gradient clipping, to all (or a subset) of these
gradients every time the step function is called. If this keyword argument is provided when
calling the step method, its value will override the default specified here.

• track_higher_grads – if True, during unrolled optimization the graph be retained,
and the fast weights will bear grad funcs, so as to permit backpropagation through the op-

12 Chapter 3. Differentiable Optimizers

higher, Release 0.2.1

timization process. Setting this to False allows the differentiable optimizer to be used in
“test mode”, without potentially tracking higher order gradients. This can be useful when
running the training loop at test time, e.g. in k-shot learning experiments, without incurring
a significant memory overhead.

class higher.optim.DifferentiableSGD(other, reference_params, fmodel=None, de-
vice=None, override=None, grad_callback=None,
track_higher_grads=True, **kwargs)

A differentiable version of the SGD optimizer.

This optimizer creates a gradient tape as it updates parameters.

Initialize the optimizer with the state of an existing optimizer.

Parameters

• other – an existing optimizer instance.

• reference_params – an iterable over the parameters of the original model.

• fmodel (optional) – a patched stateless module with a view on weights.

• device (optional) – the device to cast state tensors to.

• override (optional) – a dictionary mapping optimizer settings (i.e. those which would
be passed to the optimizer constructor or provided within parameter groups) to either sin-
gleton lists of override values, or to a list of override values of length equal to the number
of parameter groups. If a single override is provided for a keyword, it is used for all pa-
rameter groups. If a list is provided, the ith element of the list overrides the corresponding
setting in the ith parameter group. This permits the passing of tensors requiring gradient to
differentiable optimizers for use as optimizer settings.

• grad_callback – (optional) a single argument function which will be applied to a list
of gradients of parameters, which respects the order specified by reference_params.
This can be used to apply a function, such as gradient clipping, to all (or a subset) of these
gradients every time the step function is called. If this keyword argument is provided when
calling the step method, its value will override the default specified here.

• track_higher_grads – if True, during unrolled optimization the graph be retained,
and the fast weights will bear grad funcs, so as to permit backpropagation through the op-
timization process. Setting this to False allows the differentiable optimizer to be used in
“test mode”, without potentially tracking higher order gradients. This can be useful when
running the training loop at test time, e.g. in k-shot learning experiments, without incurring
a significant memory overhead.

higher.optim.apply_trainable_opt_params(opt, override)
Apply learned hyperparameters back to original optimizer.

Parameters

• opt – the original optimizer. The hyperparameters in its parameter groups will be modified
in place.

• override – dictionary of the format used for the override kwarg of differentiable optimiz-
ers.

Return type None

higher.optim.create_diff_optim(opt_type, opt_kwargs=None, params=None, fmodel=None,
device=None, override=None, track_higher_grads=True,
**kwargs)

Construct a differentiable version of an new optimizer.

13

higher, Release 0.2.1

Parameters

• opt_type – the type (constructor) for a torch.optim.Optimizer subtype from amongst the
types supported by the library, or registered with it a runtime.

• opt_kwargs – a dictionary of keywords to be passed to the optimizer constructor.

• params (optional) – a list of (fast) weights which the differentiable optimizer will up-
date. These must be provided if fmodel is not provided. If both, these will be used in lieu.
These will only be used for shape inference when initializing the optimizer. This argument
can also take the same format as parameter groups, i.e. an iterable over dictionaries which
contain the ‘params’ key with fast weights as value, and group-specific hyperparameters.

• fmodel (optional) – a patched version of the module tracked by opt. It is as-
sumed this patched instance has a view on its latest fast weights through fmodel.
parameters(). If provided, it is not necessary to pass the fast weights explicitly to
the differentiable optimizer’s step function via the keyword arg params. If not provided,
the fast weights to update must be provided to step.

• device (optional) – the device to cast the optimizer state to when creating the differ-
entiable optimizer. If not provided, the same device as used for the parameters tracked by
opt will be used.

• override (optional) – a dictionary mapping optimizer settings (i.e. those which would
be passed to the optimizer constructor or provided within parameter groups) to either sin-
gleton lists of override values, or to a list of override values of length equal to the number
of parameter groups. If a single override is provided for a keyword, it is used for all pa-
rameter groups. If a list is provided, the ith element of the list overrides the corresponding
setting in the ith parameter group. This permits the passing of tensors requiring gradient to
differentiable optimizers for use as optimizer settings.

• track_higher_grads – if True, during unrolled optimization the graph be retained,
and the fast weights will bear grad funcs, so as to permit backpropagation through the op-
timization process. Setting this to False allows the returned differentiable optimizer to be
used in “test mode”, without potentially tracking higher order gradients. This can be useful
when running the training loop at test time, e.g. in k-shot learning experiments, without
incurring a significant memory overhead.

Returns An initialized DifferentiableOptimizer instance of the right subtype.

Return type DifferentiableOptimizer

higher.optim.get_diff_optim(opt, reference_params, fmodel=None, device=None, override=None,
track_higher_grads=True, **kwargs)

Construct/initialize a differentiable version of an existing optimizer.

Parameters

• opt – an existing optimizer, assumed to be an instance of torch.optim.Optimizer,
of a supported type which is either defined in torch.optim, or a custom implemantation
which has been added to higher at runtime by using higher.register_optim. We
assume this optimizer tracks the parameters (or some subset thereof) of a single torch.
nn.Module instance, with support for parameter groups.

• reference_params – the parameters of the module tracked by opt, as returned by
module.parameters().

• fmodel (optional) – a patched version of the module tracked by opt. It is as-
sumed this patched instance has a view on its latest fast weights through fmodel.
parameters(). If provided, it is not necessary to pass the fast weights explicitly to

14 Chapter 3. Differentiable Optimizers

higher, Release 0.2.1

the differentiable optimizer’s step function via the keyword arg params. If not provided,
the fast weights to update must be provided to step.

• device (optional) – the device to cast the optimizer state to when creating the differ-
entiable optimizer. If not provided, the same device as used for the parameters tracked by
opt will be used.

• override (optional) – a dictionary mapping optimizer settings (i.e. those which would
be passed to the optimizer constructor or provided within parameter groups) to either sin-
gleton lists of override values, or to a list of override values of length equal to the number
of parameter groups. If a single override is provided for a keyword, it is used for all pa-
rameter groups. If a list is provided, the ith element of the list overrides the corresponding
setting in the ith parameter group. This permits the passing of tensors requiring gradient to
differentiable optimizers for use as optimizer settings.

• track_higher_grads – if True, during unrolled optimization the graph be retained,
and the fast weights will bear grad funcs, so as to permit backpropagation through the op-
timization process. Setting this to False allows the returned differentiable optimizer to be
used in “test mode”, without potentially tracking higher order gradients. This can be useful
when running the training loop at test time, e.g. in k-shot learning experiments, without
incurring a significant memory overhead.

Returns An initialized DifferentiableOptimizer instance of the right subtype.

Return type DifferentiableOptimizer

higher.optim.get_trainable_opt_params(opt, device=None)
Get an override dictionary from an optimizer instance.

Parameters

• opt – the optimizer to obtain an override dictionary from.

• device (optional) – the device to cast the learnable tensors to.

Returns A dictionary of the format expected for the override kwarg of differentiable optimizers. It
is initialized with trainable tensors with as values those float and int hyperparameters found in
the optimizer’s parameter groups (or stuctures containing these). Heuristically, hyperparameters
containing mixtures of differentiable and non-differentiable types will be ignored (and must be
manually specified when constructing an override dict).

Return type Dict[str, List[Any]]

higher.optim.register_optim(optim_type, diff_optim_type)
Registers a new optimizer type for use with higher functions.

Parameters

• optim_type – the type of a new optimizer, assumed to be an instance of torch.optim.
Optimizer.

• diff_optim_type – the type of a new differentiable optimizer, assumed to be an in-
stance of higher.optim.DifferentiableOptimizer with functionally equiva-
lent logic to optim_type.

Return type None

15

higher, Release 0.2.1

16 Chapter 3. Differentiable Optimizers

CHAPTER

FOUR

UTILITY FUNCTIONS

Utility functions for components of higher.

higher.utils.flatten(x)
Returns a flattened list of objects from a nested structure.

Return type List[Any]

higher.utils.get_func_params(module, device=None, safe_copy=True)
Returns a detached copy of module parameters which requires gradient.

Return type List[Tensor]

17

higher, Release 0.2.1

18 Chapter 4. Utility Functions

CHAPTER

FIVE

INDICES AND TABLES

• genindex

• modindex

• search

19

higher, Release 0.2.1

20 Chapter 5. Indices and tables

PYTHON MODULE INDEX

h
higher, 3
higher.optim, 7
higher.patch, 5
higher.utils, 17

21

higher, Release 0.2.1

22 Python Module Index

INDEX

A
apply_trainable_opt_params() (in module

higher.optim), 13

B
buffer_sync() (in module higher.patch), 5

C
create_diff_optim() (in module higher.optim), 13

D
DifferentiableAdadelta (class in higher.optim),

7
DifferentiableAdagrad (class in higher.optim), 8
DifferentiableAdam (class in higher.optim), 9
DifferentiableAdamax (class in higher.optim), 9
DifferentiableASGD (class in higher.optim), 7
DifferentiableOptimizer (class in

higher.optim), 10
DifferentiableRMSprop (class in higher.optim),

11
DifferentiableRprop (class in higher.optim), 12
DifferentiableSGD (class in higher.optim), 13

F
flatten() (in module higher.utils), 17

G
get_diff_optim() (in module higher.optim), 14
get_func_params() (in module higher.utils), 17
get_trainable_opt_params() (in module

higher.optim), 15

H
higher

module, 3
higher.optim

module, 7
higher.patch

module, 5
higher.utils

module, 17

I
innerloop_ctx() (in module higher), 3

M
make_functional() (in module higher.patch), 5
module

higher, 3
higher.optim, 7
higher.patch, 5
higher.utils, 17

monkeypatch() (in module higher.patch), 5

R
register_optim() (in module higher.optim), 15

S
step() (higher.optim.DifferentiableOptimizer method),

11

23

	Top-Level Functions
	Monkey-Patching Functions
	Differentiable Optimizers
	Utility Functions
	Indices and tables
	Python Module Index
	Index

